Why BIM is becoming important for Retail Design?

Across global the retail markets are facing unprecedented challenges from within their sector and also from new e-commerce sectors. Retailers that are successful are aware that this success can be short lived and therefore expansion and roll out of their outlets can sometimes become a limitation for success are aware that Assuming that the challenge is indeed speed to market, for retailers, it is paramount to adopt a design planning process which can help them develop retail ideas that are versatile, clash-free and efficient to build/install within a planned budget. This is where BIM can start to provide significant benefits due to the ease of operation, use of a database of library items and the benefit of repeatability of the design concept.

BIM can be beneficial for the entire retail property development chain from design consultants and architects, to MEP installers and facility managers. If it is used effectively it can lead to faster scale up, design accuracy, higher design flexibility and cost efficiency. Whilst it does take some take and effort to convert conventional CAD drafting processes, blocks and templates to parametric BIM retail design techniques, once done BIM can help retailers to design faster and more accurately. A few of the key benefits of retail design with BIM are discussed in more detail below.

Rapid Development of Design and Construction Documents:

Conventional CAD drafting techniques for building design require different trades to create separate drawings, which sometimes stack up too many inconsistent documents as they are incomplete, usually without a lot of information that may be created by other skilled parties, such as quantity surveyors. This information is usually mandatory for building construction and includes specifications, bill of materials, cost modelling and schedule data. Not only does a BIM model provide this data, freeing up QS (quantity surveyor) resource, it also provides information from the 3d model that contains intelligent data related to design intent and construction and facilities management information. The major stakeholders will typically receive the data that is combined within a master BIM model to then extract further use and benefit from the design model.

Although the success of retail BIM projects depends on the acceptance levels of all the project participants to perceive BIM as a future-ready tool, the actual benefit of BIM lies in its ability to assist in extraction of various documents, data and views including plans, sections, elevations, renderings, bill of quantities (BOQ), material costs and time schedule, all within record time. All this results in quicker, on-demand data extraction and generation from BIM models for any construction-related designs or drawings.

Development of Standardized Re-usable BIM Families:

To maintain consistency, a retailer may use typical fixtures and fittings across their retail network as retail industry primarily focuses on brand image and brand appearance. Retail design teams, with the help of BIM teams, are able to create standardized libraries of BIM for fixtures and fittings which, with further modifications can be used when designing and planning new outlets, thus enabling retail owners to maintain exclusivity with regards to visual elements, consumer experiences and shoplifting layouts. The design team, keeps BIM libraries updated for various unique outlet chains which help in saving time during conceptual and detail design stages whilst boosting efficiency ratios.

For example, consistency within all the outlets can be maintained by keeping the key retail architectural elements uniform with the help of BIM families which leaves scope for tweaking other architectural details and regional elements.

Creating Store Prototype Models that Can Be Localized:

When developing new prototype store designs, BIM proves to be a valuable asset to retailers BIM prototypes not only offer 3D visualisation prowess but also provide a quality database which consists of detailed information on crucial aspects such as materials, fixtures, components, cost estimation and quantity take-offs. As compared to traditional CAD drafting methods, intuitive and elaborate prototypes like these, accelerate the roll out of new store designs.

In summary, using design standards, fixtures, fittings and brand guidelines in a BIM environment as opposed to a CAD environment may incur an up-front cost and time contribution, but the benefit for mass roll out using a library of intelligent components will significantly reduce overall design time and also improve accuracy of project drawings and project data – providing greater certainly for construction teams and also costing teams.


As-Built Construction Assets: Key to Future Planning and Facilities Management

Preparing ‘as-built’ drawings and models is certainly one of the most crucial requirements of any design-build project. These final set of construction assets validates how the contractor built the structure including all the changes and modifications that were made in the process. The finalised drawings and models are passed on from the contractors to the building owners and property managers.

The set of as-built drawings and models, though underestimated and neglected, broadly serve a dual purpose. Firstly, the as-built drawings and models act as a guidebook to the AEC (architecture, engineering, and construction) firms that are contracted for renovation and refurbishment of an existing structure. So, the time, cost, and resources that would have been utilised during pre-renovation survey are saved. Secondly, they help owners and facilities managers to conveniently undertake maintenance and refurbishment activities besides helping them during emergency situations e.g. for rapid evacuation.

Whereas data-rich as-built 3D building information models have obvious benefits over 2D drawing sets, the decision to choose one over the other mainly involves factors, such as the scale of the project, owner’s preference, and the design-build teaming structure. The owners of relatively small building projects may prefer 2D as-built drawings of an existing building, prepared by a technician after collecting accurate data on site. On the contrary, large-scale design-build and renovation projects may require BIM-driven as-built 3D models.

Assuming that the project in question has not had a BIM model for the design process which is then updated during the as-built stage of the project, there are two typical ways of preparing as-built BIM models. Firstly, using the as-built drawings and other construction drawing sets as the starting point, 3D BIM models can be prepared using applications such as Autodesk Revit. The second method involves the Scan to BIM technique where point cloud data of the structures. This point cloud data is then converted into an intelligent BIM model using tools such as Cloudworx and Scan to BIM applications such as Revit.

The as-built drawings and BIM models serve as a comprehensive reference tool for owners and property managers. They benefit from these as-built drawings and models in the following ways:-

  • The finalised as-built construction assets make future project planning, including renovations, extensions, and redevelopments, convenient and cost effective for the owners.
  • Since the as-built drawings and BIM models contain complete details related to dimensions, fabrication, erection, elevations, sizing, materials, location, and mechanical/electrical/plumbing utilities, the owners can use this data and conveniently manage facilities within budget.
  • The owners can use these as-built assets to resolve disputes regarding insurance claims. In case of a massive loss due to extreme disasters, the insurance company will require extensive documentation, including the as-built drawings and models to support your claims.

As the as-built drawings and models are prepared by combining the drawings/models of all the building services, the owners and property managers can schedule maintenance operations of the building’s MEP (M&E) systems in a timely manner.

Key Traits of an Effective Architectural BIM Support Partnership

In the building design and construction industry, construction documentation forms an important phase between design development and on-site construction administration. In scenarios where architectural practices decide to transition to object-oriented BIM modelling or there is a need to turn around more projects than can be executed by the internal team, firms decide to look for experienced architectural BIM modelling support partners. Whilst such collaboration models provide cost-effective and high-quality access to CAD and BIM expertise, issues can crop up if your support partner does not have appropriate processes and quality standards in place.

As a result, to make the BIM outsourcing engagement work successfully for your architectural practice, there is a need to ensure that the following are in place:

A Dedicated Point of Contact

A dedicated point of contact in the form of a project manager serves as an integral link between your firm and the outsourcing partner. He/she liaises with the architectural firm’s representative (in most cases the project’s chief architect or the design head) to gather and analyse in detail the project’s requirements, construction specifications, and CAD/BIM standards followed.

Well Defined Project Flow

After a comprehensive needs analysis by the project manager, a clear process should be in place to break down the client’s 3D architectural modelling and construction documentation requirements into a tangible project scope. The scope then dictates the roles/responsibilities and the turnaround schedules of each of the senior team members, including team leader, senior BIM technicians, senior CAD technicians, BIM coordinators, and draftsmen.

Production Planning Roadmap

Depending on the resources at hand, the project manager along with team leader should map out a timeline for documentation delivery. Traditional CAD-based processes necessitate clear guidelines pertaining to drawing scales, dimensions, symbols, targets, annotations, and abbreviations. Modern BIM-enabled workflows also require establishment of protocols and standards for master model worksharing, data exchange, library creation, and model coordination.

Multi-Tier Quality Checks

Rigorous quality check protocols are an integral part of delivering accurate standards-compliant architectural BIM modelling and construction documentation support to architectural practises. The first tier entails draftsmen involved to cross-review their peer’s work followed by an inspection by the team leader on local models. The final tier of quality check phase requires the project manager to undergo a detailed review of the master model. Once the central master model gets a go-ahead from the project manager, it is used to extract construction documents. Finally, the construction documents are reviewed to check whether they fulfil the construction specifications set by the client.

Ability to Coordinate Online with Clients

The success of your outsourcing partnership will also depend on the associate firm’s ability to hold regular update and doubt-solving virtual sessions. Focussed meetings ensure both you as well as those on the outsourcing team are on the same page as far as the project progress is concerned.

To know about how our architectural BIM modelling and proven BIM/CAD outsourcing model, contact us.

BIM-Enabled IPD: A Win-Win for Owners and Project Stakeholders

The building and construction industry is faced with a multitude of challenges in areas, ranging from design planning, construction administration and budgeting, to scheduling and facilities management. To add to this, the demands from owners’ regards to timely completion, cost efficiency, constructability and energy performance are becoming increasingly stringent. As a result, multidisciplinary coordination between all the parties involved in an AEC project right from design planning through to on-site construction, administration is paramount to meet these demands.

Integrated Project Delivery (IPD) framework, if implemented appropriately, can ensure ongoing collaboration between diverse stakeholders, including the client, the architect, the main contractor, the MEP designer and the MEP contractor at all the stages of the project from conception to completion. As defined by the American Institute of Architects (AIA), Integrated Project Delivery (IPD) is a process that “collaboratively harnesses the talents and insights of all the participants to optimize project results, increase value to the owner, reduce waste and maximize efficiency through all phases of design, fabrication, and construction.”

A crucial element of the IPD approach is the adoption of building information modelling (BIM) technology. Unlike traditional project delivery methods, the essence of BIM technology is the central parametric model that is developed using 3D input, often times separate BIM models, from different parties involved in an AEC project. By enabling greater collaboration and information-sharing between different participants, data-rich BIM models drive the IPD framework and improve decision-making ability that can positively impact the project’s outcome. Following are the compelling reasons as to why AEC project teams must employ a combination of IPD and BIM and how this approach delivers positive value propositions for all stakeholders:

  • The IPD contractual agreements establishes clarity and dismisses ambiguity amongst all the project stakeholders with regards to decision-making, detailed responsibilities of each party, and risk/reward-sharing mechanism for each task. As a result, major participants, including the architects, MEP engineers and main contractors are clear about their respective roles and timeframes.
  • Employing parametric BIM models structures the project team in a way that encourages clear, open, and horizontal communication. This facilitates diverse disciplines to seamlessly coordinate during the pre-construction design planning and construction phases.
  • IPD necessitates mapping out comprehensive workflows and protocols for developing, sharing and updating the digital BIM models. These plans clearly delineate procedures for intra-discipline as well as inter-discipline design data management and communication.
  • Due to an integrated design management structure facilitated by BIM and IPD, the cost and time benefits experienced by the primary project team members spill over to secondary chain participants, including fabricators, installation experts and facility managers.

So, if your firm operates in the AEC industry and is looking for a highly recommended IPD support services provider to handle initial consultation to complete project management, contact us.

Building Information Modelling (BIM): An Indispensable Decision-Making Tool for Contractors

General contractors, also referred to as main contractors in the UK, play an essential role in managing the cost and schedule of highly complex construction projects, particularly during the post-design phases. Professional contracting firms and professionals are involved in a list of crucial tasks. These include diligently studying construction drawing sets developed by architects, seeking local construction permits and licenses, examining day-to-day on-site activities, estimating project cost, monitoring schedules, and serving as a key bridge between key trades, including mechanical services, electrical services, plumbing services and fire protection services.

XS CAD’s 3D BIM modeling and 3D BIM coordination services assist general contractors (main contractors) by providing them with a high degree of predictability and enabling on-time completion of projects. Considering that general contractors (main contractors) bear significant risk of project implementation, they appreciate the advantage of our BIM services.


Owing to our extensive experience in pre-construction planning, multi-service BIM coordination, and BIM modeling for education, commercial, healthcare, leisure, and residential projects, XS CAD has served as a valuable partner to general contractors (main contractors) in the US, Canada, Australia, India, and the UK to support the design process for architectural, structural and MEP disciplines.

Apart from helping contractors deliver time and cost efficiencies on their projects, our tailored BIM services and MEP spatially coordinated models enhance coordination and interoperability between general contractors (main contractors) and all the subcontractors responsible for each of the building services — mechanical, electrical, plumbing, and fire protection. Since the parametric objects created within BIM models represent actual elements within a construction project, this information is valuable for designers, installers and cost consultants.

Whilst 3D BIM modeling services support contractors by offering them a thorough pre-construction visualisation with regards to structure, architectural elements, MEP spatial coordination, clash inspection, and interference analysis, 4D BIM allows them to create time-based virtual mock-ups, also known as sequence-based simulations to improve productivity on site. Additionally, 4D BIM services help them detect time and workflow-based clashes resulting in efficient materials and equipment planning, besides improving the flow of multidisciplinary personnel in a constrained space and time.

Furthermore, XS CAD’s 4D BIM Services help general contractors (main contractors) test several “what if” scenarios and make improvements if needed. As a result, the simulation of various project sequences relative to their planned timeframes enables quick and effective decision-making. This decision-making advantage and accurate predictability offered by our BIM modeling services leads to on-time and cost-effective project completion by contractors for their end customers.

BIM-led Prefabrication: An Effective Way Forward for Healthcare MEP Projects

Designing and planning for mechanical, electrical, and plumbing (MEP) systems for healthcare facilities brings with it a set of daunting challenges for the entire MEP (M&E) fraternity. Considering the project complexities, stringent building codes, healthcare standards, local regulations, and constricted deadlines, MEP (M&E) designers and contractors are always walking a tight line.

Whilst building information modelling(BIM) techniques at the design stage may improve interdisciplinary MEP coordination, help detect design clashes and streamline scheduling/costing in the preconstruction phase, very little is known about how BIM-led prefabrication of MEP systems offsite can help enhance quality, save time and money, and optimise the logistical flow on site. The BIM design data, embedded in the MEP models, can be used to create fabrication drawings by either using traditional detailing or using fabrication softwares (AutoDesk Fabrication). These drawings display fabrication details which can be directly recognised by the CNC machines for production purposes.

One of the most challenging engineering systems to design, healthcare facilities house a range of medical and therapeutic departments to treat different illnesses. Each of these departments has its own set of requirements for HVAC, electrical, plumbing and fire protection systems as well as plant areas. So, whether the hospital’s MEP system demands HVAC systems with precise humidity control, temperature, and indoor air quality (IAQ) standards or custom isolation for operating rooms, the information rooted in the BIM 3D documents can enhance modularisation of mechanical, electrical and plumbing systems.

Some other MEP components which are specifically used in healthcare facilities include sprinklers, fire suppression systems, high-pressure steam boilers, direct-expansion (DX) cooling systems, and tamper-proof receptacles. As it is well known in the AEC industry worldwide, BIM is a change in approach which brings together all the discipline-specific professionals during the pre-construction phase. On the contrary, the traditional design-bid-build approach lacks coordination between the concerned disciplines.

Accordingly, when MEP (M&E) designers, consultants, and fabricators use BIM for prefabrication of MEP components, the benefits are worthy. Besides, the modularisation of mechanical, electrical and plumbing systems in a controlled environment and installing them on site is highly effective considering its cost savings, quality improvements, labour efficiency, waste reduction, and in-time completion benefits.

Considering the complex nature of MEP (M&E) systems in healthcare facilities and an increase in adoption of BIM, prefabrication and modularisation will offer more productivity and efficiency gains to MEP (M&E) designers, contractors, manufacturers, fabricators, and installers. Modern prefabrication technologies along with integrated project delivery (IPD) can certainly lead to greater predictability, timely project completion, and increased cost

Benefits of Building Information Modeling (BIM)

Building Information Modeling ( BIM ) is becoming increasingly popular in the AEC industry as a new technology and an approach that allows viewing of a virtual model of the building before it is actually built.  BIM brings with it many advantages that facilitates the design, planning, construction and operational phase of the project.

BIM allows for easy coordination and interoperability between different domains that results in effective exchange of information.  It provides a common single integrated database to support different domains associated in the delivery process.  Since sharing of same data is possible, the loss of information in communication process is minimized.  It’s ability to produce an accurate virtual representation of a building model giving a clear idea of how the real building would look like. It reduces the total expenditure by eliminating the waste of construction material.It helps to reduce the errors and omissions resulting in less rework.

A BIM model when made as a graphical illustration helps to identify the potential failures, leaks, evacuation plans etc. It also allows estimating the cost involved. Material quantities are automatically extracted and changed as per the changes made in the model. The use of BIM yields higher productivity and reduces contingencies.The objects created using BIM are defined as building elements such as walls, spaces, columns beams etc. It can be used to demonstrate the entire lifecycle of a building from construction to facility operation. BIM technology also helps to check clashes and collisions as a BIM model is created in 3D space.  For example, it can check for collision between pipes and steel beams, walls or ducts.

BIM technology is really a breakthrough from the traditional 2D CAD drawings. With so many benefits of using BIM technology, BIM is definitely the future of the construction industry.