Utilise BIM 360 and C4R for AEC Projects – Collaborate, Communicate and Coordinate

Picture3In various stages of the construction project lifecycle, multiple project stakeholders and teams are involved, which involves teams of specific disciplines working on certain elements of the project from different locations on a MEP (M&E) BIM or architectural BIM modeling project. In a multiplatform, multi-device, co-working and co-sharing environment, two-way communication, synchronised coordination, seamless collaboration and clash-free solutions are some of the aspects which determine the successful completion of a project.In various stages of the construction project lifecycle, multiple project stakeholders and teams are involved, which involves teams of specific disciplines working on certain elements of the project from different locations on a MEP (M&E) BIM or architectural BIM modeling project. In a multiplatform, multi-device, co-working and co-sharing environment, two-way communication, synchronised coordination, seamless collaboration and clash-free solutions are some of the aspects which determine the successful completion of a project.

To facilitate collaboration and coordination, reduce costs, improve project management and deliver projects efficiently within the timeframe and budgetary requirement, there are cloud-based, collaboration tools such as BIM 360 and C4R for AEC projects which help in providing improvements to AEC projects.

Some of the ways in which collaboration and work sharing tools help you address project management challenges include:

1. They enable collaboration – To keep all project stakeholders updated with the latest information, collaboration and work-sharing tools provide access to BIM project data which is centralised and help in connecting multiple team members through various devices, platforms and locations. As a BIM manager, project head or architect, you can use C4R to upload your Revit model to the cloud, BIM 360 Team to link your projects and provide access to multiple team members to enable them to make changes, add markups and communicate using features such as the Communicator on C4R.

2. They facilitate two-way communication – When multiple team members are working on various elements in the same, centralised model, communication is important. The Communicator, an integrated, instant messenger type feature in C4R enables your team members to communicate easily in real-time on active projects.

3. They enhance the interference analysis and coordination process – In a construction project, you may have teams from various disciplines working on a model. To ensure the process of clash detection, coordination and resolution are efficient, using a combination of collaborative and clash detection tools is the best solution. You could use C4R along with BIM 360 Glue and BIM 360 Field to detect clashes, synchronise the coordination of changes and create coordinated, clash-free and construction ready architectural models.

4. They reduce costs – By addressing coordination issues in the initial stages of the construction project lifecycle, you can reduce time spent and costs that you could have incurred had you not resolved coordination issues. To decrease costs, deliver projects faster and reduce errors, using collaboration tools help in coordination and enhance project transparency.

5. They provide a holistic view – Typically individual team get an isolated view of specific elements of the project based on their role in the process. For you to enable better coordination, collaboration and communication, using cloud-based, collaboration tools help in providing a holistic view of the project, which is important in creating coordinated, construction ready models.

6. They facilitate remote project management – Using browser-based and cloud-based tools make work sharing and collaboration is easier. You can procure the best resources and cross-border teams by using cloud-based tools, therefore, reducing cost on IT infrastructure, enhancing project delivery time and maintaining budgetary requirements.

By facilitating two-way communication, cross-border coordination and seamless collaboration between multiple project stakeholders, work sharing and collaboration tools such as C4R and BIM 360 provide you with a solution to address project management challenges. To respond to the increasing demand for faster project delivery within budgets, collaboration tools provide you with the best possible solution by increasing efficiency, reducing costs, facilitating effective project management and enabling faster project delivery. While adoption of the latest technology in the AEC industry is gradual, being a first mover could provide you with an advantage. The sooner you utilise tools such as C4R and BIM 360, the easier it will be for you to efficiently deliver projects faster, reduce costs and ensure your teams can seamlessly collaborate, coordinate and communicate.

Advertisements

Technical and Contractual Risks Associated with BIM

Blog-14thApril-2017BIM (Building Information Modeling) is a perfect solution for architects, design and construction teams to address design implementation challenges. 3D BIM coordination facilitates an evolving workflow, interoperability and collaboration between different project stakeholders. This has widened the scope and application of concept design, design development, implementation and project delivery methods.

With 3D BIM coordination, you can collaborate with designers, engineers, building services contractors and general contractors to communicate design intent and ensure the project is implemented efficiently from preconstruction concept review to construction completion. When collaboration happens at this scale, you need to consider the associated technical and contractual risks before you adopt BIM tools:

1.Data control – When using 3D BIM models, you may have different users entering data at various stages of a project lifecycle. To ensure there is responsibility for inaccuracies and control of data entry, you must ensure BIM users sign applicable indemnities, disclaimers and warranties. This will help you in controlling the movement of data and assigning responsibilities.

2.Assignment of responsibilities – Typically in BIM projects, many team members collaborate and ownership of BIM data must be clearly stated. To avoid conflict and confusion, you need to create contract documents that should clearly define ownership and assign responsibilities when using BIM data.

3.Proprietary information protection – In the process of design development and project implementation, proprietary information may be used by team members. While your client may have ownership rights for the design, contract documents need to clearly state the ownership rights of proprietary information to ensure protection.

4.Design licensing – In certain projects, designers and contractors may provide vendor designs and specifications of material and equipment. In such instances, you need to create policies to ensure that only those designs with relevant licenses for the project are used. This will help you in avoiding licensing issues of vendor designs associated with their products.

5.Consistency in the use of technology – When adopting BIM modeling and coordination processes, to maintain an efficient and smooth workflow, you need to ensure that different project stakeholders, who need to work collaboratively, are using software versions that are compatible. All users must be informed about changes in versions and software updates. Based on the BIM environment you choose, whether closed BIM (the use of the same software and version) or open BIM (the use of neutral or compatible file formats), you need to make sure this selection is agreed at the outset of the project. This will help in avoiding compatibility issues that may arise in the later stages of the project lifecycle.

In any collaborative environment, clearly defining responsibilities and rules will help in improving teamwork of various project stakeholders. You may adopt an Integrated Project Delivery (IPD) strategy to build successful working relationships and facilitate efficient collaboration between your entire design, engineering and construction teams. While there is no secret formula or a common risk mitigation strategy, you can reduce conflicts and confusion by adopting best practices and creating well-defined contracts. By clearly specifying the roles, responsibilities and accountable members or groups, it will help you to create a successful collaborative environment and embrace an evolving concept such as 3D BIM coordination.

With BIM modeling you can improve the process of concept design, design development and communication of design concept to project stakeholders and clients. As new BIM technology is introduced, the next step would be to adopt a cloud-based BIM collaboration tool, such as A360 Collaboration for Revit (C4R). With cloud-based BIM tools, you can facilitate ‘borderless’ collaboration and allow project stakeholders to work on a model simultaneously from different sites, anywhere, anytime and on any device. By adopting BIM, you can improve collaboration between project teams, optimise project duration, reduce cost and strengthen client relationship.

Why BIM is becoming important for Retail Design?

Across global the retail markets are facing unprecedented challenges from within their sector and also from new e-commerce sectors. Retailers that are successful are aware that this success can be short lived and therefore expansion and roll out of their outlets can sometimes become a limitation for success are aware that Assuming that the challenge is indeed speed to market, for retailers, it is paramount to adopt a design planning process which can help them develop retail ideas that are versatile, clash-free and efficient to build/install within a planned budget. This is where BIM can start to provide significant benefits due to the ease of operation, use of a database of library items and the benefit of repeatability of the design concept.

BIM can be beneficial for the entire retail property development chain from design consultants and architects, to MEP installers and facility managers. If it is used effectively it can lead to faster scale up, design accuracy, higher design flexibility and cost efficiency. Whilst it does take some take and effort to convert conventional CAD drafting processes, blocks and templates to parametric BIM retail design techniques, once done BIM can help retailers to design faster and more accurately. A few of the key benefits of retail design with BIM are discussed in more detail below.

Rapid Development of Design and Construction Documents:

Conventional CAD drafting techniques for building design require different trades to create separate drawings, which sometimes stack up too many inconsistent documents as they are incomplete, usually without a lot of information that may be created by other skilled parties, such as quantity surveyors. This information is usually mandatory for building construction and includes specifications, bill of materials, cost modelling and schedule data. Not only does a BIM model provide this data, freeing up QS (quantity surveyor) resource, it also provides information from the 3d model that contains intelligent data related to design intent and construction and facilities management information. The major stakeholders will typically receive the data that is combined within a master BIM model to then extract further use and benefit from the design model.

Although the success of retail BIM projects depends on the acceptance levels of all the project participants to perceive BIM as a future-ready tool, the actual benefit of BIM lies in its ability to assist in extraction of various documents, data and views including plans, sections, elevations, renderings, bill of quantities (BOQ), material costs and time schedule, all within record time. All this results in quicker, on-demand data extraction and generation from BIM models for any construction-related designs or drawings.

Development of Standardized Re-usable BIM Families:

To maintain consistency, a retailer may use typical fixtures and fittings across their retail network as retail industry primarily focuses on brand image and brand appearance. Retail design teams, with the help of BIM teams, are able to create standardized libraries of BIM for fixtures and fittings which, with further modifications can be used when designing and planning new outlets, thus enabling retail owners to maintain exclusivity with regards to visual elements, consumer experiences and shoplifting layouts. The design team, keeps BIM libraries updated for various unique outlet chains which help in saving time during conceptual and detail design stages whilst boosting efficiency ratios.

For example, consistency within all the outlets can be maintained by keeping the key retail architectural elements uniform with the help of BIM families which leaves scope for tweaking other architectural details and regional elements.

Creating Store Prototype Models that Can Be Localized:

When developing new prototype store designs, BIM proves to be a valuable asset to retailers BIM prototypes not only offer 3D visualisation prowess but also provide a quality database which consists of detailed information on crucial aspects such as materials, fixtures, components, cost estimation and quantity take-offs. As compared to traditional CAD drafting methods, intuitive and elaborate prototypes like these, accelerate the roll out of new store designs.

In summary, using design standards, fixtures, fittings and brand guidelines in a BIM environment as opposed to a CAD environment may incur an up-front cost and time contribution, but the benefit for mass roll out using a library of intelligent components will significantly reduce overall design time and also improve accuracy of project drawings and project data – providing greater certainly for construction teams and also costing teams.

How Open BIM Facilitates Collaborative Design?

Due to its multifaceted benefits, building information modelling (BIM) is rapidly gaining traction in the AEC industry as the key pre-construction planning, construction management, and post-construction facilities management tool. Whilst many firms have transitioned to this ‘intelligent’ model-based process, the ‘real’ potential of BIM can only be achieved by open exchange of design and non-design project information amongst key project stakeholders: architects, structural engineers, MEP design consultants, MEP engineers, and other trade subcontractors.

A common challenge faced by mid-sized to large projects is that not all project participants use the same BIM application. This is where the concept of closed BIM and open BIM comes into play. The above two approaches are fundamentally different ways of looking at 3D BIM modelling.

Closed BIM, also known as ‘lonely BIM’, is a BIM environment wherein the same version of a BIM application is used by all key project stakeholders. This approach may also include different trades using the BIM-compatible applications from the same vendor. As a case in point, the lead architect uses Revit Architecture to model architectural elements. The structural engineer uses Revit Structure to take the architectural BIM model as the reference and define the building’s structure whilst the MEP design consultant uses Revit MEP to model building services. Although no file conversion is required in the closed BIM approach, the process is restrictive in the sense that it only allows project participants well-versed with certain BIM tools to collaborate, thereby not allowing ‘true’ integration.

On the other hand, open BIM is a workflow wherein all participants can collaborate and exchange project information with each other using non-proprietary, neutral file formats irrespective of the BIM tools and applications they use. The information exchanged is not only limited to the BIM model’s geometric data but also includes other parametric data, such as specifications, quantity take-offs, material procurement, cost estimation, and construction phasing. Most common open BIM protocols currently in use include Industry Foundation Classes (IFC) and Construction Operations Building Information Exchange (COBie).

Whilst IFC allows exchange of both geometric and non-design data amongst different applications that support open BIM, COBie only allows facilities management data to be exchanged. Using IFC, the architectural BIM model created by the lead architect’s design team in Graphisoft ArchiCAD can be opened and manipulated by the structural engineer when his/her team works in Tekla Structures. Similarly, the integrated architectural and structural BIM model can be imported into Revit MEP platform by the lead MEP consultant. Once the detailed MEP design is complete, the federated model can be taken into a clash detection and 3D BIM coordination tool, such as Navisworks again using IFC format. This leads to workflow-level collaboration amongst key project members which is the essence of BIM compared to the conventional 2D CAD workflows.

At XS CAD, we have an extensive know-how of both open BIM and closed BIM methodologies due to the fact that we have provided 3D BIM modelling and 3D BIM coordination support to architects, MEP engineers, and contractors in the US, the UK, Canada, Australia, and India. To find out more about how your project can benefit from our BIM modelling services, contact us.

As-Built Construction Assets: Key to Future Planning and Facilities Management

Preparing ‘as-built’ drawings and models is certainly one of the most crucial requirements of any design-build project. These final set of construction assets validates how the contractor built the structure including all the changes and modifications that were made in the process. The finalised drawings and models are passed on from the contractors to the building owners and property managers.

The set of as-built drawings and models, though underestimated and neglected, broadly serve a dual purpose. Firstly, the as-built drawings and models act as a guidebook to the AEC (architecture, engineering, and construction) firms that are contracted for renovation and refurbishment of an existing structure. So, the time, cost, and resources that would have been utilised during pre-renovation survey are saved. Secondly, they help owners and facilities managers to conveniently undertake maintenance and refurbishment activities besides helping them during emergency situations e.g. for rapid evacuation.

Whereas data-rich as-built 3D building information models have obvious benefits over 2D drawing sets, the decision to choose one over the other mainly involves factors, such as the scale of the project, owner’s preference, and the design-build teaming structure. The owners of relatively small building projects may prefer 2D as-built drawings of an existing building, prepared by a technician after collecting accurate data on site. On the contrary, large-scale design-build and renovation projects may require BIM-driven as-built 3D models.

Assuming that the project in question has not had a BIM model for the design process which is then updated during the as-built stage of the project, there are two typical ways of preparing as-built BIM models. Firstly, using the as-built drawings and other construction drawing sets as the starting point, 3D BIM models can be prepared using applications such as Autodesk Revit. The second method involves the Scan to BIM technique where point cloud data of the structures. This point cloud data is then converted into an intelligent BIM model using tools such as Cloudworx and Scan to BIM applications such as Revit.

The as-built drawings and BIM models serve as a comprehensive reference tool for owners and property managers. They benefit from these as-built drawings and models in the following ways:-

  • The finalised as-built construction assets make future project planning, including renovations, extensions, and redevelopments, convenient and cost effective for the owners.
  • Since the as-built drawings and BIM models contain complete details related to dimensions, fabrication, erection, elevations, sizing, materials, location, and mechanical/electrical/plumbing utilities, the owners can use this data and conveniently manage facilities within budget.
  • The owners can use these as-built assets to resolve disputes regarding insurance claims. In case of a massive loss due to extreme disasters, the insurance company will require extensive documentation, including the as-built drawings and models to support your claims.

As the as-built drawings and models are prepared by combining the drawings/models of all the building services, the owners and property managers can schedule maintenance operations of the building’s MEP (M&E) systems in a timely manner.

Crucial Developments in 3D Building Services Design and Coordination Field

Building services projects have benefited from many developments that have occurred in the last decade. Whether in the areas of MEP (M&E) systems design, 3D building services coordination, or interdisciplinary collaboration, the major advances seen in this field have emanated both from within the industry as well as from other sources, such as government regulations and economic developments.

  • Intelligent BIM Software for Planning and Design of Projects

One of the biggest changes in the modern building services industry is the use of intelligent building information modelling (BIM) software tools that allow for the creation of accurate and detailed representations of mechanical, electrical, plumbing, and fire protection systems using computable data. The fact that there are BIM tools more intelligent than ever and also which work across disciplines, such as architecture, structural engineering, and building services engineering, increases interdisciplinary coordination and reduces construction waste and rework.

For instance, the BIM models created using Autodesk Revit Architecture and Revit MEP can be used by building service designers for developing concept designs, schematics, and tender drawings. The same parametric model can be worked upon and used by contractors to create detailed installation and 3D MEP (M&E) coordinated drawings, including services-specific as well as multi-service coordinated plans, sections, and elevations. Furthermore, fabricators and installers can use the BIM model in conjunction with FAB MEP, a fabrication tool, to manufacture pre-assembled modules for installation on-site.

Not only does BIM allow creation of a coordinated 3D model, it also allows for information to be added to the model that can be used for project-critical purposes, including schedule creation, cost estimation, energy analysis and facilities management.

  • Greater Interdisciplinary Collaboration

Due to the growing adoption of BIM tools industry-wide complemented by the availability of sophisticated hardware systems and online collaboration channels, there is a far greater degree of interdisciplinary coordination between different stakeholders involved in AEC projects. As a result, architects, structural engineers, MEP consultants, MEP engineers, main contractors (general contractors), cost estimators, and fabricators can seamlessly collaborate during the design and planning stages and avoid costly rework during the construction stages.

For instance, large-scale construction projects generally have a complicated project structure comprising diverse project teams based in different geographical areas. During the pre-construction stage, sharing and interlinking the BIM model prepared by architects, structural engineers, MEP specialists and contractors enables respective designs to stay coordinated. Due to cloud-based collaboration tools, team members can hold review sessions online without having to be physically present together.

  • Higher Degree of Pre-Fabrication and Just-In-Time Delivery for Installation

With the widespread use of parametric modelling techniques in MEP design and planning, a major trend is to use BIM models for pre-fabrication purposes with a view to enhance the logistical cycle on the construction site. When used in conjunction with CNC fabrication applications, such as FAB-MEP, the BIM design data can be used to create fabrication drawings that can be recognised by CNC machines. Such a BIM-led prefabrication can streamline the installation process on site and avoid costly miscalculations.

Taking into account the complexities of the MEP (M&E) systems industry, BIM-driven prefabrication and modularisation has led to multifaceted benefits: reduced rework, in-time project completion, cost savings and increased efficiency.

  • Government Intervention

Another critical development from outside the industry is the government policies in different parts of the world either promoting or mandating the use of BIM in varying levels for government-funded or private projects. In the US, the General Services Administration (GSA), through its Public Buildings Service (PBS) Office of Chief Architect (OCA), established the National 3D-4D-BIM Program in 2003. GSA mandated the use of spatial program BIMs as the minimum requirements for submission to OCA for Final Concept approvals of all major projects receiving design funding in 2007 and beyond.

In Europe, the UK Government has made Level 2 BIM compulsory for all publicly-funded projects from 2016 onwards with a view to trim the cost of public-funded projects and to reduce carbon emission to meet its EU commitments. Government agencies from the Scandinavian nations have played an important role. Senate Properties, Finland’s state property services agency, required the use of BIM for its projects since 2007. Neighbouring Norway and Denmark have also made sufficient headway towards adopting BIM practises in their public-funded projects. Statsbygg, the Norwegian government agency that manages public properties, including heritage sites, campuses, office buildings and other buildings, employed BIM in all its projects by 2010.

In Asia, Singapore was in the forefront of driving the adoption of BIM. After implementing the world’s first BIM electronic submission (e-submission) system for building approvals, the Building and Construction Authority (BCA) mapped the BIM Roadmap with the aim to adopt BIM for 80% of construction projects by 2015. In Hong Kong, the Housing Authority (HA) not only developed a set of modelling standards and guidelines for BIM implementation but also stated its intent to apply BIM to all its new projects by 2014-15. South Korea’s Public Procurement Service, which reviews designs of construction projects and provides construction management services for public institutions, has made BIM mandatory for all projects worth more than S$50 million and for all public sector projects by 2016.

BIM-Enabled IPD: A Win-Win for Owners and Project Stakeholders

The building and construction industry is faced with a multitude of challenges in areas, ranging from design planning, construction administration and budgeting, to scheduling and facilities management. To add to this, the demands from owners’ regards to timely completion, cost efficiency, constructability and energy performance are becoming increasingly stringent. As a result, multidisciplinary coordination between all the parties involved in an AEC project right from design planning through to on-site construction, administration is paramount to meet these demands.

Integrated Project Delivery (IPD) framework, if implemented appropriately, can ensure ongoing collaboration between diverse stakeholders, including the client, the architect, the main contractor, the MEP designer and the MEP contractor at all the stages of the project from conception to completion. As defined by the American Institute of Architects (AIA), Integrated Project Delivery (IPD) is a process that “collaboratively harnesses the talents and insights of all the participants to optimize project results, increase value to the owner, reduce waste and maximize efficiency through all phases of design, fabrication, and construction.”

A crucial element of the IPD approach is the adoption of building information modelling (BIM) technology. Unlike traditional project delivery methods, the essence of BIM technology is the central parametric model that is developed using 3D input, often times separate BIM models, from different parties involved in an AEC project. By enabling greater collaboration and information-sharing between different participants, data-rich BIM models drive the IPD framework and improve decision-making ability that can positively impact the project’s outcome. Following are the compelling reasons as to why AEC project teams must employ a combination of IPD and BIM and how this approach delivers positive value propositions for all stakeholders:

  • The IPD contractual agreements establishes clarity and dismisses ambiguity amongst all the project stakeholders with regards to decision-making, detailed responsibilities of each party, and risk/reward-sharing mechanism for each task. As a result, major participants, including the architects, MEP engineers and main contractors are clear about their respective roles and timeframes.
  • Employing parametric BIM models structures the project team in a way that encourages clear, open, and horizontal communication. This facilitates diverse disciplines to seamlessly coordinate during the pre-construction design planning and construction phases.
  • IPD necessitates mapping out comprehensive workflows and protocols for developing, sharing and updating the digital BIM models. These plans clearly delineate procedures for intra-discipline as well as inter-discipline design data management and communication.
  • Due to an integrated design management structure facilitated by BIM and IPD, the cost and time benefits experienced by the primary project team members spill over to secondary chain participants, including fabricators, installation experts and facility managers.

So, if your firm operates in the AEC industry and is looking for a highly recommended IPD support services provider to handle initial consultation to complete project management, contact us.